DOI:10.20894/IJCOA.
Periodicity: Bi Annual.
Impact Factor:
SJIF:5.079 & GIF:0.416
Submission:Any Time
Publisher: IIR Groups
Language: English
Review Process:
Double Blinded

News and Updates

Author can submit their paper through online submission. Click here

Paper Submission -> Blind Peer Review Process -> Acceptance -> Publication.

On an average time is 3 to 5 days from submission to first decision of manuscripts.

Double blind review and Plagiarism report ensure the originality

IJCOA provides online manuscript tracking system.

Every issue of Journal of IJCOA is available online from volume 1 issue 1 to the latest published issue with month and year.

Paper Submission:
Any Time
Review process:
One to Two week
Journal Publication:
June / December

IJCOA special issue invites the papers from the NATIONAL CONFERENCE, INTERNATIONAL CONFERENCE, SEMINAR conducted by colleges, university, etc. The Group of paper will accept with some concession and will publish in IJCOA website. For complete procedure, contact us at admin@iirgroups.org

Paper Template
Copyright Form
Subscription Form
web counter
web counter
Published in:   Vol. 2 Issue 2 Date of Publication:   December 2013

Cyclic Resolving Number of Grid and Augmented Grid Graphs

M.Chris Monica,D.Little Femilin Jana

Page(s):   112-114 ISSN:   2278-2397
DOI:   10.20894/IJCOA.101.002.002.011 Publisher:   Integrated Intelligent Research (IIR)

For an ordered set W = {w1, w2 wk}  V (G) of vertices, we refer to the ordered k-tuple r(v  W) = (d(v, w1), d(v, w2) d(v, wk)) as the (metric) representation of v with respect to W. A set W of a connected graph G is called a resolving set of G if distinct vertices of G have distinct representations with respect to W. A resolving set with minimum cardinality is called a minimum resolving set or a basis. The dimension, dim(G), is the number of vertices in a basis for G. By imposing additional constraints on the resolving set, many resolving parameters are formed. In this paper, we introduce cyclic resolving set and find the cyclic resolving number for a grid graph and augmented grid graph.