DOI:10.20894/IJCOA.
Periodicity: Bi Annual.
Impact Factor:
SJIF:5.079 & GIF:0.416
Submission:Any Time
Publisher: IIR Groups
Language: English
Review Process:
Double Blinded

Paper Template
Copyright Form
Subscription Form
web counter
web counter

News and Updates

Author can submit their paper through online submission. Click here

Paper Submission -> Blind Peer Review Process -> Acceptance -> Publication.

On an average time is 3 to 5 days from submission to first decision of manuscripts.

Double blind review and Plagiarism report ensure the originality

IJCOA provides online manuscript tracking system.

Every issue of Journal of IJCOA is available online from volume 1 issue 1 to the latest published issue with month and year.

Paper Submission:
Any Time
Review process:
One to Two week
Journal Publication:
June / December

IJCOA special issue invites the papers from the NATIONAL CONFERENCE, INTERNATIONAL CONFERENCE, SEMINAR conducted by colleges, university, etc. The Group of paper will accept with some concession and will publish in IJCOA website. For complete procedure, contact us at admin@iirgroups.org

SCIA Journal Metrics


SCIA-GRAPH
SCIA-SAI
Published in:   Vol. 7 Issue 1 Date of Publication:   June 2018
Page(s):   44-46 Publisher:   Integrated Intelligent Research (IIR)
DOI:   10.20894/IJCOA.101.007.001.010 SAI : 2016SCIA316F0904

Renewable energy is used in the current fed switched inverter for high power production. High voltage support, wide yield ranges of operation, shoot-through resistance are a portion of the desired properties of an inverter for a reliable, versatile and less ripple AC inversion. This paper proposes a single stage, high boost inverter with buck-boost capacity which has a few particular advantages over traditional voltage source inverters (VSI) like better EMI noise, wide input and output voltage range of operation, and so on. The proposed inverter is named as Current-Fed Switched Inverter (CFSI). A renewable energy based converter structure of CFSI has been created which supplies both AC and DC loads, at the same time, from a single DC supply which makes it reasonable for DC smart grid application. This paper proposes the operation and control of a CFSI based converter which directs the AC and DC conversion voltages at their reference. The advancement of the proposed converter from essential current fed DC/DC topology is explained. The closed loop controller is verified by using the MATLAB/ Simulink environment.